Equations and inequalities Exercise A, Question 1

Question:

Solve these simultaneous equations by elimination:

$$2x - y = 6$$
$$4x + 3y = 22$$

Solution:

$$6x - 3y = 18$$

 $4x + 3y = 22$
Add:
 $10x = 40$
 $x = 4$
Substitute into $2x - y = 6$:
 $8 - y = 6$
 $y = 2$
So solution is $x = 4$, $y = 2$

Equations and inequalities Exercise A, Question 2

Question:

Solve these simultaneous equations by elimination:

$$7x + 3y = 16$$
$$2x + 9y = 29$$

Solution:

$$21x + 9y = 48$$

 $2x + 9y = 29$
Subtract:
 $19x = 19$
 $x = 1$
Substitute into $7x + 3y = 16$:
 $7 + 3y = 16$
 $3y = 9$
 $y = 3$
So solution is $x = 1$, $y = 3$

Equations and inequalities Exercise A, Question 3

Question:

Solve these simultaneous equations by elimination:

$$5x + 2y = 6$$
$$3x - 10y = 26$$

Solution:

$$25x + 10y = 30$$

 $3x - 10y = 26$
Add:
 $28x = 56$
 $x = 2$
Substitute into $5x + 2y = 6$:
 $10 + 2y = 6$
 $2y = -4$
 $y = -2$
So solution is $x = 2$, $y = -2$

Equations and inequalities Exercise A, Question 4

Question:

Solve these simultaneous equations by elimination:

$$2x - y = 12$$
$$6x + 2y = 21$$

Solution:

$$4x - 2y = 24$$

 $6x + 2y = 21$
Add:
 $10x = 45$
 $x = 4\frac{1}{2}$
Substitute into $2x - y = 12$:
 $9 - y = 12$
 $- y = 3$
 $y = -3$

So solution is $x = 4 \frac{1}{2}$, y = -3

Equations and inequalities Exercise A, Question 5

Question:

Solve these simultaneous equations by elimination:

$$3x - 2y = -6$$
$$6x + 3y = 2$$

Solution:

$$6x - 4y = -12$$

$$6x + 3y = 2$$
Subtract:
$$-7y = -14$$

$$y = 2$$
Substitute into $3x - 2y = -6$:
$$3x - 4 = -6$$

$$3x = -2$$

$$x = -\frac{2}{3}$$

So solution is $x = -\frac{2}{3}$, y = 2

Equations and inequalities Exercise A, Question 6

Question:

Solve these simultaneous equations by elimination:

$$3x + 8y = 33$$
$$6x = 3 + 5y$$

Solution:

```
6x + 16y = 66

6x = 3 + 5y

6x + 16y = 66

6x - 5y = 3

Subtract:

21y = 63

y = 3

Substitute into 3x + 8y = 33:

3x + 24 = 33

3x = 9

x = 3

So solution is x = 3, y = 3
```

Equations and inequalities Exercise B, Question 1

Question:

Solve these simultaneous equations by substitution:

$$x + 3y = 11$$
$$4x - 7y = 6$$

Solution:

$$x = 11 - 3y$$

Substitute into $4x - 7y = 6$:
 $4(11 - 3y) - 7y = 6$
 $44 - 12y - 7y = 6$
 $- 19y = -38$
 $y = 2$
Substitute into $x = 11 - 3y$:
 $x = 11 - 6$
 $x = 5$
So solution is $x = 5$, $y = 2$

Equations and inequalities Exercise B, Question 2

Question:

Solve these simultaneous equations by substitution:

$$4x - 3y = 40$$
$$2x + y = 5$$

Solution:

$$y = 5 - 2x$$

Substitute into $4x - 3y = 40$:
 $4x - 3(5 - 2x) = 40$
 $4x - 15 + 6x = 40$
 $10x = 55$
 $x = 5\frac{1}{2}$
Substitute into $y = 5 - 2x$:
 $y = 5 - 11$
 $y = -6$
So solution is $x = 5\frac{1}{2}$, $y = -6$

Equations and inequalities Exercise B, Question 3

Question:

Solve these simultaneous equations by substitution:

$$3x - y = 7$$
$$10x + 3y = -2$$

Solution:

```
-y = 7 - 3x

y = 3x - 7

Substitute into 10x + 3y = -2:

10x + 3(3x - 7) = -2

10x + 9x - 21 = -2

19x = 19

x = 1

Substitute into y = 3x - 7:

y = 3 - 7

y = -4

So solution is x = 1, y = -4
```

Equations and inequalities Exercise B, Question 4

Question:

Solve these simultaneous equations by substitution:

$$2y = 2x - 3$$
$$3y = x - 1$$

Solution:

$$x = 3y + 1$$

Substitute into $2y = 2x - 3$:
 $2y = 2 (3y + 1) - 3$
 $2y = 6y + 2 - 3$
 $-4y = -1$
 $y = \frac{1}{4}$

Substitute into x = 3y + 1:

$$x = \frac{3}{4} + 1$$

$$x = 1 \ \frac{3}{4}$$

So solution is $x = 1 \frac{3}{4}$, $y = \frac{1}{4}$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise C, Question 1

Question:

Solve the simultaneous equations:

$$(a) x + y = 11$$
$$xy = 30$$

(b)
$$2x + y = 1$$

 $x^2 + y^2 = 1$

(c)
$$y = 3x$$

$$2y^2 - xy = 15$$

(d)
$$x + y = 9$$

 $x^2 - 3xy + 2y^2 = 0$

(e)
$$3a + b = 8$$

 $3a^2 + b^2 = 28$

(f)
$$2u + v = 7$$

 $uv = 6$

Solution:

(a)
$$y = 11 - x$$

Substitute into $xy = 30$:
 $x (11 - x) = 30$
 $11x - x^2 = 30$
 $0 = x^2 - 11x + 30$
 $0 = (x - 5) (x - 6)$
 $x = 5$ or $x = 6$
Substitute into $y = 11 - x$:
when $x = 5$, $y = 11 - 5 = 6$
when $x = 6$, $y = 11 - 6 = 5$
Solutions are $x = 5$, $y = 6$ and $x = 6$, $y = 5$

(b)
$$y = 1 - 2x$$

Substitute into $x^2 + y^2 = 1$:
 $x^2 + (1 - 2x)^2 = 1$
 $x^2 + 1 - 4x + 4x^2 = 1$
 $5x^2 - 4x = 0$
 $x (5x - 4) = 0$
 $x = 0$ or $x = \frac{4}{5}$

Substitute into
$$y = 1 - 2x$$
: when $x = 0$, $y = 1$

when
$$x = \frac{4}{5}$$
, $y = 1 - \frac{8}{5} = -\frac{3}{5}$

Solutions are
$$x = 0$$
, $y = 1$ and $x = \frac{4}{5}$, $y = -\frac{3}{5}$

(c)
$$y = 3x$$

Substitute into $2y^2 - xy = 15$:

$$2(3x)^2 - x (3x) = 15$$

 $18x^2 - 3x^2 = 15$
 $15x^2 = 15$
 $x^2 = 1$
 $x = -1$ or $x = 1$
Substitute into $y = 3x$:
when $x = -1$, $y = -3$
when $x = 1$, $y = 3$
Solutions are $x = -1$, $y = -3$ and $x = 1$, $y = 3$

(d)
$$x = 9 - y$$

Substitute into $x^2 - 3xy + 2y^2 = 0$:
 $(9 - y)^2 - 3y(9 - y) + 2y^2 = 0$
 $81 - 18y + y^2 - 27y + 3y^2 + 2y^2 = 0$
 $6y^2 - 45y + 81 = 0$
Divide by 3:
 $2y^2 - 15y + 27 = 0$
 $(2y - 9)(y - 3) = 0$
 $y = \frac{9}{2}$ or $y = 3$

Substitute into
$$x = 9 - y$$
:

when
$$y = \frac{9}{2}$$
, $x = 9 - \frac{9}{2} = \frac{9}{2}$

when
$$y = 3$$
, $x = 9 - 3 = 6$

Solutions are
$$x = 4 \frac{1}{2}$$
, $y = 4 \frac{1}{2}$ and $x = 6$, $y = 3$

(e)
$$b = 8 - 3a$$

Substitute into $3a^2 + b^2 = 28$:
 $3a^2 + (8 - 3a)^2 = 28$
 $3a^2 + 64 - 48a + 9a^2 = 28$
 $12a^2 - 48a + 36 = 0$
Divide by 12:
 $a^2 - 4a + 3 = 0$
 $(a - 1)(a - 3) = 0$
 $a = 1$ or $a = 3$
Substitute into $b = 8 - 3a$:
when $a = 1$, $b = 8 - 3 = 5$
when $a = 3$, $b = 8 - 9 = -1$
Solutions are $a = 1$, $b = 5$ and $a = 3$, $b = -1$

(f)
$$v = 7 - 2u$$

Substitute into $uv = 6$:
 $u (7 - 2u) = 6$
 $7u - 2u^2 = 6$
 $0 = 2u^2 - 7u + 6$
 $0 = (2u - 3) (u - 2)$
 $u = \frac{3}{2}$ or $u = 2$

Substitute into v = 7 - 2u:

when
$$u = \frac{3}{2}$$
, $v = 7 - 3 = 4$

when
$$u = 2$$
, $v = 7 - 4 = 3$

Solutions are
$$u = \frac{3}{2}$$
, $v = 4$ and $u = 2$, $v = 3$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise C, Question 2

Question:

Find the coordinates of the points at which the line with equation y = x - 4 intersects the curve with equation $y^2 = 2x^2 - 17$.

Solution:

```
y = x - 4

Substitute into y^2 = 2x^2 - 17:

(x - 4)^2 = 2x^2 - 17

x^2 - 8x + 16 = 2x^2 - 17

0 = x^2 + 8x - 33

0 = (x + 11)(x - 3)

x = -11 or x = 3

Substitute into y = x - 4:

when x = -11, y = -11 - 4 = -15

when x = 3, y = 3 - 4 = -1

Intersection points: (-11, -15) and (3, -1)
```

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise C, Question 3

Question:

Find the coordinates of the points at which the line with equation y = 3x - 1 intersects the curve with equation $y^2 - xy = 15$.

Solution:

$$y = 3x - 1$$
Substitute into $y^2 - xy = 15$:
$$(3x - 1)^{2} - x(3x - 1) = 15$$

$$9x^{2} - 6x + 1 - 3x^{2} + x = 15$$

$$6x^{2} - 5x - 14 = 0$$

$$(6x + 7)(x - 2) = 0$$

$$x = -\frac{7}{6} \text{ or } x = 2$$
Substitute into $y = 3x - 1$:
$$\text{when } x = -\frac{7}{6}, y = -\frac{21}{6} - 1 = -\frac{9}{2}$$

$$\text{when } x = 2, y = 6 - 1 = 5$$
Intersection points: $\left(-1\frac{1}{6}, -4\frac{1}{2}\right)$ and $(2, 5)$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise C, Question 4

Question:

Solve the simultaneous equations:

(a)
$$3x + 2y = 7$$

 $x^2 + y = 8$

(b)
$$2x + 2y = 7$$

 $x^2 - 4y^2 = 8$

Solution:

(a)
$$2y = 7 - 3x$$

$$y = \frac{1}{2}(7 - 3x)$$

Substitute into $x^2 + y = 8$:

$$x^2 + \frac{1}{2}(7 - 3x) = 8$$

Multiply by 2:

$$2x^2 + (7 - 3x) = 16$$

$$2x^2 - 3x - 9 = 0$$

$$2x^{2} - 3x - 9 = 0$$

$$(2x + 3) (x - 3) = 0$$

$$x = -\frac{3}{2} \text{ or } x = 3$$

Substitute into
$$y = \frac{1}{2} \left(7 - 3x \right)$$
:

when
$$x = -\frac{3}{2}$$
, $y = \frac{1}{2} \left(7 + \frac{9}{2} \right) = \frac{23}{4}$

when
$$x = 3$$
, $y = \frac{1}{2} \left(7 - 9 \right) = -1$

Solutions are
$$x = -1 \frac{1}{2}$$
, $y = 5 \frac{3}{4}$ and $x = 3$, $y = -1$

(b)
$$2x = 7 - 2y$$

$$x = \frac{1}{2} \left(7 - 2y \right)$$

Substitute into
$$x^2 - 4y^2 = 8$$
:

$$\begin{bmatrix} \frac{1}{2} \left(7 - 2y \right) \end{bmatrix}^2 - 4y^2 = 8$$

$$\frac{1}{4}$$
 (7 - 2y) 2 - 4y 2 = 8

Multiply by 4:

$$(7-2y)^2-16y^2=32$$

$$49 - 28y + 4y^2 - 16y^2 = 32$$

$$0 = 12y^2 + 28y - 17$$

$$0 = (6y + 17) (2y - 1)$$

$$y = -\frac{17}{6}$$
 or $y = \frac{1}{2}$

Substitute into
$$x = \frac{1}{2} \left(7 - 2y \right)$$
:

when
$$y = -\frac{17}{6}$$
, $x = \frac{1}{2} \left(7 + \frac{17}{3} \right) = \frac{19}{3}$

when
$$y = \frac{1}{2}, x = \frac{1}{2} \left(7 - 1 \right) = 3$$

Solutions are
$$x = 6 \frac{1}{3}$$
, $y = -2 \frac{5}{6}$ and $x = 3$, $y = \frac{1}{2}$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities

Exercise C, Question 5

Question:

Solve the simultaneous equations, giving your answers in their simplest surd form:

$$(a) x - y = 6$$
$$xy = 4$$

(b)
$$2x + 3y = 13$$

 $x^2 + y^2 = 78$

Solution:

(a)
$$x = 6 + y$$

Substitute into $xy = 4$:
 $y (6 + y) = 4$
 $6y + y^2 = 4$
 $y^2 + 6y - 4 = 0$
 $a = 1, b = 6, c = -4$
 $y = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a} = \frac{-6 \pm \sqrt{(36 + 16)}}{2} = \frac{-6 \pm \sqrt{52}}{2}$
 $\sqrt{52} = \sqrt{(4 \times 13)} = \sqrt{4} \sqrt{13} = 2 \sqrt{13}$
 $y = \frac{-6 \pm 2\sqrt{13}}{2} = -3 \pm \sqrt{13}$

Substitute into x = 6 + y:

when
$$y = -3 - \sqrt{13}$$
, $x = 6 - 3 - \sqrt{13} = 3 - \sqrt{13}$
when $y = -3 + \sqrt{13}$, $x = 6 - 3 + \sqrt{13} = 3 + \sqrt{13}$
Solutions are $x = 3 - \sqrt{13}$, $y = -3 - \sqrt{13}$ and $x = 3 + \sqrt{13}$, $y = -3 + \sqrt{13}$

(b)
$$2x = 13 - 3y$$

 $x = \frac{1}{2} \left(13 - 3y \right)$

Substitute into $x^2 + y^2 = 78$:

$$\left[\begin{array}{c} \frac{1}{2} \left(13 - 3y \right) \end{array} \right]^2 + y^2 = 78$$

$$\frac{1}{4}$$
 (13 – 3y) $^2 + y^2 = 78$

Multiply by 4:

$$(13 - 3y)^2 + 4y^2 = 312$$

$$169 - 78y + 9y^2 + 4y^2 = 312$$

$$13y^2 - 78y - 143 = 0$$

$$y^2 - 6y - 11 = 0$$

$$a = 1, b = -6, c = -11$$

$$y = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a} = \frac{6 \pm \sqrt{(36 + 44)}}{2} = \frac{6 \pm \sqrt{80}}{2}$$

$$\sqrt{80} = \sqrt{(16 \times 5)} = \sqrt{16} \sqrt{5} = 4\sqrt{5}$$

 $y = \frac{6 \pm 4\sqrt{5}}{2} = 3 \pm 2\sqrt{5}$

Substitute into
$$x = \frac{1}{2} \left(13 - 3y \right)$$
:
when $y = 3 - 2\sqrt{5}$, $x = \frac{1}{2} \left[13 - 3(3 - 2\sqrt{5}) \right] = \frac{1}{2} \left[13 - 9 + 6\sqrt{5} \right] = 2 + 3\sqrt{5}$
when $y = 3 + 2\sqrt{5}$, $x = \frac{1}{2} \left[13 - 3(3 + 2\sqrt{5}) \right] = \frac{1}{2} \left[13 - 9 - 6\sqrt{5} \right] = 2 - 3\sqrt{5}$
Solutions are $x = 2 - 3\sqrt{5}$, $y = 3 + 2\sqrt{5}$ and $x = 2 + 3\sqrt{5}$, $y = 3 - 2\sqrt{5}$

[©] Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise D, Question 1

Question:

Find the set of values of *x* for which:

- (a) 2x 3 < 5
- (b) $5x + 4 \ge 39$
- (c) 6x 3 > 2x + 7
- (d) $5x + 6 \le -12 x$
- (e) 15 x > 4
- (f) 21 2x > 8 + 3x
- (g) 1 + x < 25 + 3x
- (h) 7x 7 < 7 7x
- (i) $5 0.5x \ge 1$
- (j) 5x + 4 > 12 2x

Solution:

- (a) 2x < 5 + 3
- 2x < 8
- *x* < 4
- (b) $5x \ge 39 4$
- $\begin{array}{ccc}
 5x & \geq & 35 \\
 x & \geq & 7
 \end{array}$
- (c) 6x 2x > 7 + 3
- 4x > 10
- $x > 2^{\frac{1}{2}}$
- (d) $5x + x \le -12 6$
- $6x \leq -18$
- $x \leq -3$
- (e) -x > 4 15
- -x > -11*x* < 11
- (f) 21 8 > 3x + 2x
- 13 > 5x
- 5x < 13
- $x < 2 \frac{3}{5}$

(g)
$$x - 3x < 25 - 1$$

 $-2x < 24$
 $x > -12$

(h)
$$7x + 7x < 7 + 7$$

 $14x < 14$
 $x < 1$

(i)
$$-0.5x \ge 1-5$$

 $-0.5x \ge -4$
 $x \le 8$

(j)
$$5x + 2x > 12 - 4$$

 $7x > 8$
 $x > 1 \frac{1}{7}$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise D, Question 2

Question:

Find the set of values of *x* for which:

(a)
$$2(x-3) \ge 0$$

(b) 8 (
$$1-x$$
) > $x-1$

(c)
$$3(x+7) \le 8-x$$

(d)
$$2(x-3) - (x+12) < 0$$

(e)
$$1 + 11 (2 - x) < 10 (x - 4)$$

(f)
$$2(x-5) \ge 3(4-x)$$

(g)
$$12x - 3(x - 3) < 45$$

(h)
$$x - 2 (5 + 2x) < 11$$

(i)
$$x(x-4) \ge x^2 + 2$$

(j)
$$x(5-x) \ge 3+x-x^2$$

Solution:

(a)
$$2x - 6 \ge 0$$

 $2x \ge 6$

$$x \geq 3$$

(b)
$$8 - 8x > x - 1$$

$$8 + 1 > x + 8x$$

(c)
$$3x + 21 \le 8 - x$$

 $3x + x \le 8 - 21$

$$3x + x \leq 8 - 21$$

$$4x \leq -13$$

$$x \leq -3\frac{1}{4}$$

(d)
$$2x - 6 - x - 12 < 0$$

$$2x - x < 6 + 12$$

(e)
$$1 + 22 - 11x < 10x - 40$$

$$1 + 22 + 40 < 10x + 11x$$

$$63<21x$$

(f)
$$2x - 10 \ge 12 - 3x$$

$$2x + 3x \ge 12 + 10$$

$$5x \ge 22$$

$$x \ge 4\frac{2}{5}$$

(g)
$$12x - 3x + 9 < 45$$

 $12x - 3x < 45 - 9$
 $9x < 36$
 $x < 4$

(h)
$$x - 10 - 4x < 11$$

 $x - 4x < 11 + 10$
 $-3x < 21$
 $x > -7$

(i)
$$x^2 - 4x \ge x^2 + 2$$

 $x^2 - x^2 - 4x \ge 2$
 $-4x \ge 2$
 $x \le -\frac{1}{2}$

(j)
$$5x - x^2 \ge 3 + x - x^2$$

 $5x - x - x^2 + x^2 \ge 3$
 $4x \ge 3$
 $x \ge \frac{3}{4}$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise D, Question 3

Question:

Find the set of values of *x* for which:

(a) 3 (
$$x-2$$
) > $x-4$ and $4x+12 > 2x+17$

(b)
$$2x - 5 < x - 1$$
 and 7 ($x + 1$) > 23 - x

(c)
$$2x - 3 > 2$$
 and 3 ($x + 2$) < $12 + x$

(d)
$$15 - x < 2$$
 ($11 - x$) and 5 ($3x - 1$) $> 12x + 19$

(e)
$$3x + 8 \le 20$$
 and 2 ($3x - 7$) $\ge x + 6$

Solution:

(a)
$$3x - 6 > x - 4$$

 $3x - x > -4 + 6$
 $2x > 2$
 $x > 1$

$$4x + 12 > 2x + 17$$

 $4x - 2x > 17 - 12$
 $2x > 5$

$$x > 2 \frac{1}{2}$$

So the required set of values is $x > 2 \frac{1}{2}$

(b)
$$2x - x < -1 + 5$$

 $x < 4$

$$7(x+1) > 23 - x$$

 $7x + 7 > 23 - x$
 $7x + x > 23 - 7$
 $8x > 16$

So the required set of values is 2 < x < 4

(c)
$$2x > 2 + 3$$

 $2x > 5$
 $x > 2 \frac{1}{2}$

$$3(x+2) < 12 + x$$

 $3x + 6 < 12 + x$
 $3x - x < 12 - 6$
 $2x < 6$
 $x < 3$

So the required set of values is $2 \frac{1}{2} < x < 3$

(d)
$$15 - x < 22 - 2x$$

 $-x + 2x < 22 - 15$
 $x < 7$

$$5(3x-1) > 12x + 19$$

 $15x-5 > 12x + 19$
 $15x-12x > 19 + 5$
 $3x > 24$
 $x > 8$

There are no values satisfying both inequalities.

(e)
$$3x \le 20 - 8$$

 $3x \le 12$
 $x \le 4$

There is just one value, x = 4.

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise E, Question 1

Question:

Find the set of values of *x* for which:

(a)
$$x^2 - 11x + 24 < 0$$

(b)
$$12 - x - x^2 > 0$$

(c)
$$x^2 - 3x - 10 > 0$$

(d)
$$x^2 + 7x + 12 \ge 0$$

(e)
$$7 + 13x - 2x^2 > 0$$

(f)
$$10 + x - 2x^2 < 0$$

(g)
$$4x^2 - 8x + 3 \le 0$$

(h)
$$-2 + 7x - 3x^2 < 0$$

(i)
$$x^2 - 9 < 0$$

(j)
$$6x^2 + 11x - 10 > 0$$

(k)
$$x^2 - 5x > 0$$

(1)
$$2x^2 + 3x \le 0$$

Solution:

(a)
$$x^2 - 11x + 24 = 0$$

(x - 3) (x - 8) = 0

$$x = 3, x = 8$$

Sketch of $y = x^2 - 11x + 24$:

$$x^2 - 11x + 24 < 0$$
 when $3 < x < 8$

(b)
$$12 - x - x^2 = 0$$

 $0 = x^2 + x - 12$
 $0 = (x+4)(x-3)$
 $x = -4, x = 3$

Sketch of $y = 12 - x - x^2$:

$$12 - x - x^2 > 0$$
 when $-4 < x < 3$

(c)
$$x^2 - 3x - 10 = 0$$

(x + 2) (x - 5) = 0
 $x = -2, x = 5$

Sketch of $y = x^2 - 3x - 10$:

$$x^2 - 3x - 10 > 0$$
 when $x < -2$ or $x > 5$

(d)
$$x^2 + 7x + 12 = 0$$

 $(x + 4) (x + 3) = 0$
 $x = -4, x = -3$
Sketch of $y = x^2 + 7x + 12$:

$$x^2 + 7x + 12 \ge 0$$
 when $x \le -4$ or $x \ge -3$

(e)
$$7 + 13x - 2x^2 = 0$$

 $2x^2 - 13x - 7 = 0$
 $(2x + 1)(x - 7) = 0$
 $x = -\frac{1}{2}, x = 7$

Sketch of $y = 7 + 13x - 2x^2$:

$$7 + 13x - 2x^2 > 0$$
 when $-\frac{1}{2} < x < 7$

(f)
$$10 + x - 2x^2 = 0$$

 $2x^2 - x - 10 = 0$
 $(2x - 5)(x + 2) = 0$
 $x = 2\frac{1}{2}, x = -2$

Sketch of $y = 10 + x - 2x^2$:

$$10 + x - 2x^2 < 0$$
 when $x < -2$ or $x > 2 \frac{1}{2}$

(g)
$$4x^2 - 8x + 3 = 0$$

(2x - 1) (2x - 3) = 0
 $x = \frac{1}{2}, x = 1 \frac{1}{2}$

Sketch of $y = 4x^2 - 8x + 3$:

$$4x^2 - 8x + 3 \le 0$$
 when $\frac{1}{2} \le x \le 1$ $\frac{1}{2}$

(h)
$$-2 + 7x - 3x^2 = 0$$

 $3x^2 - 7x + 2 = 0$
 $(3x - 1)(x - 2) = 0$
 $x = \frac{1}{3}, x = 2$

Sketch of $y = -2 + 7x - 3x^2$:

$$-2 + 7x - 3x^2 < 0$$
 when $x < \frac{1}{3}$ or $x > 2$

(i)
$$x^2 - 9 = 0$$

(x + 3) (x - 3) = 0
 $x = -3, x = 3$
Sketch of $y = x^2 - 9$:

$$x^2 - 9 < 0$$
 when $-3 < x < 3$

(j)
$$6x^2 + 11x - 10 = 0$$

($3x - 2$) ($2x + 5$) = 0
 $x = \frac{2}{3}, x = -2\frac{1}{2}$

Sketch of
$$y = 6x^2 + 11x - 10$$
:

$$6x^2 + 11x - 10 > 0$$
 when $x < -2\frac{1}{2}$ or $x > \frac{2}{3}$

$$(k) x^2 - 5x = 0$$

$$x(x-5) = 0$$

$$x = 0, x = 5$$

(k) $x^2 - 5x = 0$ x (x - 5) = 0 x = 0, x = 5Sketch of $y = x^2 - 5x$:

 $x^2 - 5x > 0$ when x < 0 or x > 5

(1)
$$2x^2 + 3x = 0$$

 $x (2x + 3) = 0$

$$x(2x+3) = 0$$

$$x = 0, x = -1 \frac{1}{2}$$

Sketch of $y = 2x^2 + 3x$:

$$2x^2 + 3x \le 0$$
 when $-1 \frac{1}{2} \le x \le 0$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise E, Question 2

Question:

Find the set of values of *x* for which:

(a)
$$x^2 < 10 - 3x$$

(b)
$$11 < x^2 + 10$$

(c)
$$x (3-2x) > 1$$

(d)
$$x (x + 11) < 3 (1 - x^2)$$

Solution:

(a)
$$x^2 = 10 - 3x$$

 $x^2 + 3x - 10 = 0$
 $(x + 5) (x - 2) = 0$
 $x = -5, x = 2$
 $x^2 < 10 - 3x \Rightarrow x^2 + 3x - 10 < 0$
Sketch of $y = x^2 + 3x - 10$:

$$x^2 + 3x - 10 < 0$$
 when $-5 < x < 2$

(b)
$$11 = x^2 + 10$$

 $x^2 = 1$
 $x = -1, x = 1$
 $11 < x^2 + 10 \implies 0 < x^2 + 10 - 11 \implies x^2 - 1 > 0$
Sketch of $y = x^2 - 1$:

$$x^2 - 1 > 0$$
 when $x < -1$ or $x > 1$

(c)
$$x (3-2x) = 1$$

 $3x - 2x^2 = 1$
 $0 = 2x^2 - 3x + 1$
 $0 = (2x - 1) (x - 1)$
 $x = \frac{1}{2}, x = 1$
 $x (3-2x) > 1 \implies -2x^2 + 3x - 1 > 0 \implies 2x^2 - 3x + 1 < 0$
Sketch of $y = 2x^2 - 3x + 1$:

$$2x^2 - 3x + 1 < 0$$
 when $\frac{1}{2} < x < 1$

(d)
$$x (x + 11) = 3 (1 - x^2)$$

 $x^2 + 11x = 3 - 3x^2$
 $x^2 + 3x^2 + 11x - 3 = 0$
 $4x^2 + 11x - 3 = 0$
 $(4x - 1) (x + 3) = 0$
 $x = \frac{1}{4}, x = -3$
 $x (x + 11) < 3 (1 - x^2) \implies 4x^2 + 11x - 3 < 0$
Sketch of $y = 4x^2 + 11x - 3$:

$$4x^2 + 11x - 3 < 0$$
 when $-3 < x < \frac{1}{4}$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise E, Question 3

Question:

Find the set of values of *x* for which:

(a)
$$x^2 - 7x + 10 < 0$$
 and $3x + 5 < 17$

(b)
$$x^2 - x - 6 > 0$$
 and $10 - 2x < 5$

(c)
$$4x^2 - 3x - 1 < 0$$
 and $4(x + 2) < 15 - (x + 7)$

(d)
$$2x^2 - x - 1 < 0$$
 and $14 < 3x - 2$

(e)
$$x^2 - x - 12 > 0$$
 and $3x + 17 > 2$

(f)
$$x^2 - 2x - 3 < 0$$
 and $x^2 - 3x + 2 > 0$

Solution:

(a)
$$x^2 - 7x + 10 = 0$$

 $(x - 2) (x - 5) = 0$
 $x = 2, x = 5$

Sketch of $y = x^2 - 7x + 10$:

$$x^2 - 7x + 10 < 0$$
 when $2 < x < 5$.

$$3x + 5 < 17$$

$$3x < 17 - 5$$

Intersection is 2 < x < 4.

(b)
$$x^2 - x - 6 = 0$$

 $(x + 2) (x - 3) = 0$
 $x = -2, x = 3$
Sketch of $y = x^2 - x - 6$:

$$x^2 - x - 6 > 0$$
 when $x < -2$ or $x > 3$

$$10 - 2x < 5
- 2x < 5 - 10
- 2x < -5$$

$$x > 2\frac{1}{2}$$

Intersection is x > 3.

(c)
$$4x^2 - 3x - 1 = 0$$

 $(4x + 1)(x - 1) = 0$
 $x = -\frac{1}{4}, x = 1$

Sketch of $y = 4x^2 - 3x - 1$:

$$4x^2 - 3x - 1 < 0$$
 when $-\frac{1}{4} < x < 1$

$$4(x+2) < 15 - (x+7)$$

 $4x + 8 < 15 - x - 7$
 $4x + 8 < 8 - x$
 $4x + x < 8 - 8$

$$4x + 8 < 15 - x - 7$$

$$4x + 8 < 8 - 3$$

$$4x + x < 8 - 8$$

Intersection is $-\frac{1}{4} < x < 0$

(d)
$$2x^2 - x - 1 = 0$$

(d)
$$2x^2 - x - 1 = 0$$

(2x + 1) (x - 1) = 0

$$x = -\frac{1}{2}, x = 1$$

Sketch of $y = 2x^2 - x - 1$:

$$2x^2 - x - 1 < 0$$
 when $-\frac{1}{2} < x < 1$

$$14 < 3x - 2
14 + 2 < 3x
3x > 16$$

$$14 + 2 < 31$$

$$x > 5 \ \frac{1}{3}$$

No intersection.

There are no values of x for which both inequalities are true.

(e)
$$x^2 - x - 12 = 0$$

(e)
$$x^2 - x - 12 = 0$$

(x + 3) (x - 4) = 0

$$x = -3, x = 4$$

Sketch of $y = x^2 - x - 12$:

$$x^2 - x - 12 > 0$$
 when $x < -3$ or $x > 4$

$$3x + 17 > 2$$

 $3x > 2 - 17$
 $3x > -15$
 $x > -5$

Intersection is -5 < x < -3, x > 4.

$$(f) x^2 - 2x - 3 = 0$$

$$(x+1) (x-3) = 0$$

$$x = -1, x = 3$$

Sketch of $y = x^2 - 2x - 3$:

$$x^{2} - 2x - 3 < 0$$
 when $-1 < x < 3$
 $x^{2} - 3x + 2 = 0$
 $(x - 1)(x - 2) = 0$

$$x^2 - 3x + 2 = 0$$

$$(x-1)(x-2)=0$$

$$x = 1, x = 2$$

Sketch of $y = x^2 - 3x + 2$:

 $x^2 - 3x + 2 > 0$ when x < 1 or x > 2

Intersection is -1 < x < 1, 2 < x < 3.

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise E, Question 4

Question:

- (a) Find the range of values of k for which the equation $x^2 kx + (k+3) = 0$ has no real roots.
- (b) Find the range of values of p for which the roots of the equation $px^2 + px 2 = 0$ are real.

Solution:

(a)
$$a = 1$$
, $b = -k$, $c = k + 3$
 $b^2 - 4ac < 0$ for no real roots, so
 $k^2 - 4(k + 3) < 0$
 $k^2 - 4k - 12 < 0$
 $(k - 6)(k + 2) < 0$
 $-2 < k < 6$

(b)
$$a = p$$
, $b = p$, $c = -2$
 $b^2 - 4ac < 0$ for no real roots, so
 $p^2 + 8p < 0$
 $p (p + 8) < 0$
 -8

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 1

Question:

Solve the simultaneous equations:

$$x + 2y = 3$$

 $x^2 - 4y^2 = -33$ **[E]**

Solution:

$$x = 3 - 2y$$

Substitute into $x^2 - 4y^2 = -33$:
 $(3 - 2y)^2 - 4y^2 = -33$
 $9 - 12y + 4y^2 - 4y^2 = -33$
 $-12y = -33 - 9$
 $-12y = -42$
 $y = 3\frac{1}{2}$
Substitute into $x = 3 - 2y$:
 $x = 3 - 7 = -4$
So solution is $x = -4$, $y = 3\frac{1}{2}$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities

Exercise F, Question 2

Question:

Show that the elimination of x from the simultaneous equations:

$$x - 2y = 1$$

$$3xy - y^2 = 8$$
produces the equation
$$5y^2 + 3y - 8 = 0.$$

Solve this quadratic equation and hence find the pairs (x, y) for which the simultaneous equations are satisfied. **[E]**

Solution:

x = 1 + 2y

Substitute into
$$3xy - y^2 = 8$$
:
 $3y(1 + 2y) - y^2 = 8$
 $3y + 6y^2 - y^2 = 8$
 $5y^2 + 3y - 8 = 0$
 $(5y + 8) (y - 1) = 0$
 $y = -\frac{8}{5}$ or $y = 1$
Substitute into $x = 1 + 2y$:
when $y = -\frac{8}{5}$, $x = 1 - \frac{16}{5} = -\frac{11}{5}$
when $y = 1$, $x = 1 + 2 = 3$
Solutions are $\left(-2\frac{1}{5}, -1\frac{3}{5}\right)$ and $(3, 1)$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 3

Question:

(a) Given that $3^x = 9^{y-1}$, show that x = 2y - 2.

(b) Solve the simultaneous equations:

$$x = 2y - 2$$

 $x^2 = y^2 + 7$ **[E]**

Solution:

(a)
$$9 = 3^2$$
, so $3^x = (3^2)^{y-1} \Rightarrow 3^x = 3^{2(y-1)}$

Equate powers:
$$x = 2 (y - 1)$$
 \Rightarrow $x = 2y - 2$

(b)
$$x = 2y - 2$$

Substitute into $x^2 = y^2 + 7$: $(2y - 2)^2 = y^2 + 7$ $4y^2 - 8y + 4 = y^2 + 7$ $4y^2 - y^2 - 8y + 4 - 7 = 0$ $3y^2 - 8y - 3 = 0$ (3y + 1)(y - 3) = 0

$$(2y-2)^2 = y^2 + 7$$

$$4y^2 - 8y + 4 = y^2 + 7$$

$$4y^2 - y^2 - 8y + 4 - 7 = 0$$

$$3y^2 - 8y - 3 = 0$$

$$(3y + 1) (y - 3) = 0$$

$$y = -\frac{1}{3}$$
 or $y = 3$

Substitute into x = 2y - 2:

when
$$y = -\frac{1}{3}$$
, $x = -\frac{2}{3} - 2 = -2\frac{2}{3}$

when
$$y = 3$$
, $x = 6 - 2 = 4$

Solutions are
$$x = -2 \frac{2}{3}$$
, $y = -\frac{1}{3}$ and $x = 4$, $y = 3$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 4

Question:

Solve the simultaneous equations:

$$x + 2y = 3$$

 $x^2 - 2y + 4y^2 = 18$ **[E]**

Solution:

$$x = 3 - 2y$$
Substitute into $x^2 - 2y + 4y^2 = 18$:
$$(3 - 2y)^2 - 2y + 4y^2 = 18$$

$$9 - 12y + 4y^2 - 2y + 4y^2 = 18$$

$$8y^2 - 14y + 9 - 18 = 0$$

$$8y^2 - 14y - 9 = 0$$

$$(4y - 9)(2y + 1) = 0$$

$$y = \frac{9}{4} \text{ or } y = -\frac{1}{2}$$

Substitute into x = 3 - 2y:

when
$$y = \frac{9}{4}$$
, $x = 3 - \frac{9}{2} = -\frac{3}{2}$

when
$$y = -\frac{1}{2}$$
, $x = 3 + 1 = 4$

Solutions are
$$x = -1 \frac{1}{2}$$
, $y = 2 \frac{1}{4}$ and $x = 4$, $y = -\frac{1}{2}$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 5

Question:

(a) Solve the inequality 3x - 8 > x + 13.

(b) Solve the inequality $x^2 - 5x - 14 > 0$. **[E]**

Solution:

(a)
$$3x - x > 13 + 8$$

 $2x > 21$
 $x > 10^{\frac{1}{2}}$

(b)
$$x^2 - 5x - 14 = 0$$

 $(x + 2) (x - 7) = 0$
 $x = -2$ or $x = 7$
Sketch of $y = x^2 - 5x - 14$:

$$x^2 - 5x - 14 > 0$$
 when $x < -2$ or $x > 7$

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 6

Question:

Find the set of values of x for which (x-1)(x-4) < 2(x-4). **[E]**

Solution:

$$x^{2} - 5x + 4 < 2x - 8$$

$$x^{2} - 5x - 2x + 4 + 8 < 0$$

$$x^{2} - 7x + 12 < 0$$

$$x^{2} - 7x + 12 = 0$$

 $(x - 3) (x - 4) = 0$
 $x = 3$ or $x = 4$
Sketch of $y = x^{2} - 7x + 12$:

$$x^2 - 7x + 12 < 0$$
 when $3 < x < 4$.

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 7

Question:

(a) Use algebra to solve (x-1)(x+2) = 18.

(b) Hence, or otherwise, find the set of values of x for which (x-1)(x+2) > 18. **[E]**

Solution:

(a)
$$x^2 + x - 2 = 18$$

 $x^2 + x - 20 = 0$
 $(x + 5)(x - 4) = 0$
 $x = -5$ or $x = 4$

(b)
$$(x-1)(x+2) > 18 \implies x^2 + x - 20 > 0$$

Sketch of $y = x^2 + x - 20$:

$$x^2 + x - 20 > 0$$
 when $x < -5$ or $x > 4$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 8

Question:

Find the set of values of *x* for which:

(a)
$$6x - 7 < 2x + 3$$

(b)
$$2x^2 - 11x + 5 < 0$$

(c) both
$$6x - 7 < 2x + 3$$
 and $2x^2 - 11x + 5 < 0$. **[E]**

Solution:

(a)
$$6x - 2x < 3 + 7$$

 $4x < 10$
 $x < 2^{\frac{1}{2}}$

(b)
$$2x^2 - 11x + 5 = 0$$

($2x - 1$) ($x - 5$) = 0
 $x = \frac{1}{2}$ or $x = 5$

Sketch of $y = 2x^2 - 11x + 5$:

$$2x^2 - 11x + 5 < 0$$
 when $\frac{1}{2} < x < 5$

(c)

Intersection is $\frac{1}{2} < x < 2 \frac{1}{2}$.

Solutionbank C1Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 9

Question:

Find the values of k for which $kx^2 + 8x + 5 = 0$ has real roots.

Solution:

$$a = k, b = 8, c = 5$$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $b^2 - 4ac \ge 0$ for real roots. So $8^2 - 4k \times 5 \ge 0$
 $64 - 20k \ge 0$
 $64 \ge 20k$

$$\frac{64}{20} \geq k$$

$$k \leq 3\frac{1}{5}$$

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 10

Question:

Find algebraically the set of values of x for which (2x-3)(x+2) > 3(x-2). **[E]**

Solution:

$$2x^{2} + x - 6 > 3x - 6$$

 $2x^{2} + x - 3x - 6 + 6 > 0$
 $2x^{2} - 2x > 0$
 $2x (x - 1) > 0$
Solve the equation:
 $2x (x - 1) = 0$
 $x = 0$ or $x = 1$
Sketch of $y = 2x^{2} - 2x$:

 $2x^2 - 2x > 0$ when x < 0 or x > 1

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 11

Question:

(a) Find, as surds, the roots of the equation $2(x+1)(x-4) - (x-2)^2 = 0$.

(b) Hence find the set of values of x for which $2(x+1)(x-4) - (x-2)^2 > 0$. **[E]**

Solution:

(a)
$$2(x^2 - 3x - 4) - (x^2 - 4x + 4) = 0$$

 $2x^2 - 6x - 8 - x^2 + 4x - 4 = 0$
 $x^2 - 2x - 12 = 0$
 $a = 1, b = -2, c = -12$
 $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$:

$$x = \frac{2 \pm \sqrt{(-2)^2 + 48}}{2} = \frac{2 \pm \sqrt{52}}{2}$$

$$\sqrt{52} = \sqrt{4} \sqrt{13} = 2 \sqrt{13}$$

 $x = 1 + \sqrt{13}$ or $x = 1 - \sqrt{13}$

(b) 2 (
$$x + 1$$
) ($x - 4$) - ($x - 2$) $^2 > 0 \Rightarrow x^2 - 2x - 12 > 0$
Sketch of $y = x^2 - 2x - 12$:

$$x^2 - 2x - 12 > 0$$
 when $x < 1 - \sqrt{13}$ or $x > 1 + \sqrt{13}$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 12

Question:

- (a) Use algebra to find the set of values of x for which x(x-5) > 36.
- (b) Using your answer to part (a), find the set of values of y for which y^2 ($y^2 5$) > 36.

Solution:

(a)
$$x^2 - 5x > 36$$

 $x^2 - 5x - 36 > 0$
Solve the equation:
 $x^2 - 5x - 36 = 0$
 $(x + 4)(x - 9) = 0$
 $x = -4$ or $x = 9$
Sketch of $y = x^2 - 5x - 36$:

$$x^2 - 5x - 36 > 0$$
 when $x < -4$ or $x > 9$

(b) Either
$$y^2 < -4$$
 or $y^2 > 9$
 $y^2 < -4$ is not possible. No values.
 $y^2 > 9 \implies y > 3$ or $y < -3$

Edexcel Modular Mathematics for AS and A-Level

Equations and inequalities Exercise F, Question 13

Question:

The specification for a rectangular car park states that the length x m is to be 5 m more than the breadth. The perimeter of the car park is to be greater than 32 m.

(a) Form a linear inequality in x.

The area of the car park is to be less than 104m².

- (b) Form a quadratic inequality in x.
- (c) By solving your inequalities, determine the set of possible values of x. **[E]**

Solution:

(a) Length is
$$x$$
 metres, breadth is $(x-5)$ metres.
Perimeter is $x+x+(x-5)+(x-5)=(4x-10)$ metres So $4x-10>32$

(b) Area is
$$x (x - 5)$$
 m². So $x (x - 5) < 104$

$$4x - 10 > 32$$

$$4x > 32 + 10$$

$$x > 10^{-\frac{1}{2}}$$

Quadratic:

$$x^2 - 5x < 104$$

$$x^2 - 5x - 104 < 0$$

Solve the equation:

$$x^2 - 5x - 104 = 0$$

$$(x+8)(x-13)=0$$

$$x = -8 \text{ or } x = 13$$

Sketch of
$$y = x^2 - 5x - 104$$
:

$$x^2 - 5x - 104 < 0$$
 when $-8 < x < 13$

Intersection is $10 \frac{1}{2} < x < 13$.